Unsupervised Change Analysis Using Supervised Learning
نویسندگان
چکیده
We propose a formulation of a new problem, which we call change analysis, and a novel method for solving the problem. In contrast to the existing methods of change (or outlier) detection, the goal of change analysis goes beyond detecting whether or not any changes exist. Its ultimate goal is to find the explanation of the changes. While change analysis falls in the category of unsupervised learning in nature, we propose a novel approach based on supervised learning to achieve the goal. The key idea is to use a supervised classifier for interpreting the changes. A classifier should be able to discriminate between the two data sets if they actually come from two different data sources. In other words, we use a hypothetical label to train the supervised learner, and exploit the learner for interpreting the change. Experimental results using real data show the proposed approach is promising in change analysis as well as concept drift analysis.
منابع مشابه
INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملTime Variant Change Analysis in Satellite Images
This paper describes the time variant changes in satellite images using Self Organizing Feature Map (SOFM) technique associated with Artificial Neural Network. In this paper, we take a satellite image and find the time variant changes using above technique with the help of MATLAB. This paper reviews remotely sensed data analysis with neural networks. First, we present an overview of the main co...
متن کاملUnsupervised Learning and Generalization
The concept of generalization is deened for a general class of unsupervised learning machines. The generalization error is a straightforward extension of the corresponding concept for supervised learning, and may be estimated empirically using a test set or by statistical means { in close analogy with supervised learning. The empirical and analytical estimates are compared for Principal Compone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008